Thursday, February 28, 2013

"In Scientific First, Researchers Link Two Rats' Brains via Computer" (What's next, the paralyzed walk?)

Ya gotta love this guy. He's a showman but he publishes in open-access journals, in effect letting the whole world have at it. More after the jump.
From Slate:
It's not exactly rat telepathy. Let's call it a computer-mediated rat mind-meld

Brain_to_Brain_interface 
Researchers used one rat's brain waves to influence a second rat's actions.
Illustration courtesy of Duke University
In a lab in Brazil, a rat faced an opening in the wall of its enclosure, and two levers. If it detected with its whiskers that the opening was narrow, it was supposed to press one lever. If the opening was wide, it was supposed to press the other. Choose the right lever, and it would be rewarded with a sip of water.
With practice, the rat learned to press the correct lever 95 percent of the time. Then came the remarkable part.

Researchers implanted one set of electrodes in the brain of the rat in Brazil, and another set of electrodes in the brain of a second rat at Duke University. Via an Internet connection, they set it up so that a signal from the brain of the rat in Brazil would be sent, in simplified form, directly to the brain of the rat in North Carolina. The rat in North Carolina also faced two levers, but had no information to go on as to which one to press—except for the signal coming from the first rat's brain.

The test: Could the rat in North Carolina press the correct lever, based on the width of the opening in the enclosure of the rat in Brazil? Six or seven times out of 10, it did.

The study, published Thursday morning in the open-access journal Scientific Reports, appears to be the first to allow animals to communicate via a brain-to-brain computer interface. The researchers, led by neuroscientist Miguel Nicolelis at Duke, say the feedback actually went both ways: When the second rat chose the correct lever, the first rat got an additional reward, which apparently encouraged it to send a clearer and stronger brain signal the next time. If that's true, it would amount to not only communication, but a form of cooperation....MORE
In "UPDATED--'A leading neuroscientist says Kurzweil’s Singularity isn’t going to happen....'" I called Doc Nicolelis a show off (If you're into mind controlled robotic avatars here's the M.D. PhD showoff at TEDMED 2012) and he is one. The thing is, the showing off is in the service of one of the highest value projects I can think of.
Here's the backstory:
Neuroscientist Miguel Nicolelis went on The Daily Show in 2011 and told Jon Stewart that he would develop a robotic body suit that would allow paralyzed people to walk again simply by thinking about it — and he’d do it in just 3 or 4 years.
And here's the rest of the story from Wired:
It was an audacious, some might say reckless, claim. But two years later, Nicolelis insists he’s on track. And he hopes to prove it in brazen fashion in front of billions of people during one of the world’s most-watched events: the World Cup.

The tournament, which will be held in his native Brazil, is less than 16 months away. If all goes according to plan, during the opening ceremony, a young paralyzed person will step onto the field in a robotic exoskeleton operated by electrodes implanted in his or her brain, walk about 20 steps, and kick a soccer ball.

This may sound incredible, but in recent years, research on using signals from the brain to operate machines has taken great strides. Scientists have developed brain-machine interfaces that allow paralyzed humans to move a computer cursor or even use a robotic arm to pick up a piece of chocolate or touch a loved one for the first time in years. Nicolelis has set his sights even higher: He wants to get paralyzed people up and walking around. If he succeeds it could be a tremendous advance. Right now he’s still developing this technology in monkeys. There’s a long way to go.

But Nicolelis was brimming with confidence in January when I visited his lab at Duke University to see how his work is progressing. “We’re getting close to making wheelchairs obsolete,” he said....MORE
Here's the Doctor, Doctor in Scientific American last August:

Coming Soon: Artificial Limbs Controlled by Thoughts

The idea that paralyzed people might one day control their limbs just by thinking is no longer a Hollywood-style fantasy
In 2014 billions of viewers worldwide may remember the opening game of the World Cup in Brazil for more than just the goals scored by the Brazilian national team and the red cards given to its adversary. On that day my laboratory at Duke University, which specializes in developing technologies that allow electrical signals from the brain to control robotic limbs, plans to mark a milestone in overcoming paralysis.
 
If we succeed in meeting still formidable challenges, the first ceremonial kick of the World Cup game may be made by a paralyzed teenager, who, flanked by the two contending soccer teams, will saunter onto the pitch clad in a robotic body suit. This suit—or exoskeleton, as we call it—will envelop the teenager's legs. His or her first steps onto the field will be controlled by motor signals originating in the kicker's brain and transmitted wirelessly to a computer unit the size of a laptop in a backpack carried by our patient. This computer will be responsible for translating electrical brain signals into digital motor commands so that the exoskeleton can first stabilize the kicker's body weight and then induce the robotic legs to begin the back-and-forth coordinated movements of a walk over the manicured grass. Then, on approaching the ball, the kicker will visualize placing a foot in contact with it. Three hundred milliseconds later brain signals will instruct the exoskeleton's robotic foot to hook under the leather sphere, Brazilian style, and boot it aloft.

This scientific demonstration of a radically new technology, undertaken with collaborators in Europe and Brazil, will convey to a global audience of billions that brain control of machines has moved from lab demos and futuristic speculation to a new era in which tools capable of bringing mobility to patients incapacitated by injury or disease may become a reality. We are on our way, perhaps by the next decade, to technology that links the brain with mechanical, electronic or virtual machines. This development will restore mobility, not only to accident and war victims but also to patients with ALS (also known as Lou Gehrig's disease), Parkinson's and other disorders that disrupt motor behaviors that impede arm reaching, hand grasping, locomotion and speech production. Neuroprosthetic devices—or brain-machine interfaces—will also allow scientists to do much more than help the disabled. They will make it possible to explore the world in revolutionary ways by providing healthy human beings with the ability to augment their sensory and motor skills.....MORE
This stuff is pretty fresh, the Scientific Reports paper was published today, the Wired story, yesterday.
We're watching, in real time, someone win a Nobel Prize. 

Me? I'm trying to figure out why I posted "What Monkey Pornography and Celebrity Worship Tells Us About Human Nature".

Here's the Walk Again Project 

See also:
Maybe He Didn't See the Part Where the Monkey Controlled a Robot on the Other Side of the World With Its Little Monkey Brain