Monday, January 26, 2015

"Technical hurdles have been overcome for the first human head transplant"

That's old news, July 1, 2013 to be precise. Here's our post from that day.
This more recent (Dec. 2014) item is from Slate:

We Might Be Able to 3-D-Print an Artificial Mind One Day
I’m an artificial-intelligence skeptic. My problem isn’t with the software, but the hardware. Current computer technologies may give us faster, lighter laptops, but AI needs more than the PC equivalent of go-faster stripes—it needs a revolution in how we build processors. Such a revolution may be just around the corner though. As I discuss in a new article in the journal Nature Nanotechnology, the convergence of technologies such as 3-D printing, advanced processor architectures, and nanotechnology are opening up radical new possibilities in how we might construct brain-inspired computers in the future.

If what we think of as the human mind is the product of a biological machine (albeit a complex one), there is little to suggest that we won’t one day have the ability to emulate it. This is what’s driving artificial intelligence research and the emergence of computers like IBM’s Watson that are getting close to thinking like a person. Yet powerful as Watson is, current manufacturing techniques will never enable such technologies to become ubiquitous.
It’s a problem of dimensions.

Imagine drawing five points on a piece of paper and trying to join each point to every other, without any of the interconnecting lines touching. You can’t do it. A second piece of paper layered over the first helps make the connections. But the more points you add and the more connections there are, the harder it gets to connect every point to every other one.

It’s a simple illustration of how hard it is to replicate the physical structure of the human brain—a 3-D matrix of billions of neurons tied together by hundreds of trillions of synaptic connections. Conventional manufacturing techniques can get us partway there. For instance, companies like IBM are pushing the limits of conventional approaches using to create brain-like processing architectures. But like the points on the paper, the technology is still inherently two-dimensional, meaning that additional complexity comes with a massive price tag.
If brain-inspired processors are to become an everyday reality, we’ll need radically different manufacturing processes....MORE